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SUMMARY

An analytical investigation into the basic equivalence of high-order
and reduced-order aircraft dynamics is presented. The need to consider
system response to inputs represented by points in the Laplace domain is
explained in terms of the ability of a damped sinusoid series to mcdel
general aperiodic pilot inputs. The region of concern in the Laplace
domain is related to pilot response time by the time to the initial peak
of a single damped sinusoid input. Several respresentative high-order
systems and their lower order equivalents are examined for similarity of
time responses. A new approach for equivalent systems application is
suggested based on matching time responses over the Laplace domain region.
Implications of the analysis to present methods of applying equivalent

systems and to suggested pilot compensation criteria are examined.

The analysis leads to the conclusion that equivalent system para-
meters are variables dependent on Laplace domain location and that the
success of current methods depend on that variation being negligible.
The further conclusion is reached that if equivalent system parameters

are allowed to vary, artificial time delays are unnecessary and unde-

sirable in achieving time response similarity.
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INTRODUCTION

In the development of the newest fighter aircraft, increased stability
augnentation and flight control system sophistication have been emplcyed
as a means of maximizing performance capabilities. !n doing so, the form
of the transfer functions describing the bare airframe and flight control
system have grown. In the total system transfer function a clear distinc-
tion between roots due to feedback elements and those due to bare airframe
dynamics have often been lost. Since the standards of MIL-F-87858 are
based on those root locations a problem exists in how to apply the require-
ments and indeed if the requirements are applicable at all. No extensive
body of data currently exists on the acceptability of higher-order sys-
tems to pilots. No general consensus exists on proposed methods for deal-

ing with systems of arbitrary order. Thus both designer and evaluator are

left without a clear cut means of predicting any given system's acceptability.

Recent attempts to deal! with the problem have included the equivalent
systems approach of reference (1), and the Neal and Smith criterion of
reference (2). Although this investigation deals primarily with equival-
ent systems, it will show some important implications toward Neal and

Smith's criterion as well.

Attempts to verify these criteria have concentrated on statistical
sampling of pilot data and correlation of results with the predictions of
each method. Since both methods have been used with some success, it seems
unlikely that statistical verification alone will resolve the differences

between them.

The following methods adopt a much more analytical view defining
the concept of equivalency and developing conclusions employing well ac~
cepted linear control theory. The concept follows directiy from the idea
that pilots want an airplane to fly like an unaugmented airplane regardless
of its actual dynamics. This is the rationale under which the existing
requirements, or any modification based on a fixed system equation, may

be applied when the actual system order may vary.
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CONCEPT OF AN EQUIVALENT SYSTEM

Whenever attempting to gain insight through analytical development
it is useful to begin at the most elementary point. In the case of equi-
valent systems that point is the concept itself which may be simply sta-
ted as follows: It is possible that two linear systems of different or-
der when stimulated by a common input wil! produce highly similar outputs.
Lf those outputs are sufficiently similar as to be indistinguishable to
the human operator of the system, the operator will find each system
equally acceptable or unacceptable. In this event the two systems may
be considered equivalent, and criteria which define the acceptability of

one may be used to determine the acceptability of the other.

Current efforts in equivalent systems have taken the approach that
lower-order equivalents may be determined by finding a system of prescrib-
ed form whose frequency response {jwBode) closely approximates that of the

high-order system over a range of frequencies.

The form is that of unaugmented short period and dutch roll for
longitudinal and lateral directional dynamics respectively. Each may
be modified by a transport time delay to approximate high frequency lags
and obtain a more precise frequency response match. Since much more
investigation of longitudinal equivalents has been done, the analysis

will concentrate on that form.

Longitudinal Equivalent System Form

] -TS
5 Ke (s + F"Zj) e
Fs (<2 , ,ESPe 2
2E3pe ¢
(s " $ * w nspe )
nspe

, %52 , Ke, % spe and Whspe are determined to minimize the magnitude and
92e
phase difference of the high-order system (HOS), and low-order system (LOS},

jwBode between frequencies of 0.1 to 10.0 radians. Computer programs have

been developed which find the low~order equivalent by comparing magnitude

T

and phase at a number (usually twenty) of frequencies across this range.
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The equivalent system parameters are then varied to minimize a squared

error function, termed a cost or mismatch function:

cost = %;(MagHos - MagLos)2 + .02 (PhaseHOS - PhaseLos)2
Magnitude is in decibels and Phase is in degrees.

The assumption is then made that the resuiting low-order system is
a true equivalent of the high-order system provided a cost function of
10 or less is obtained. Results of early fixed-base simulation experi-
ments showed considerable pilot dissatisfaction with systems whose cost
functions exceeded ten and therefore failure to obtain this level of mis-
match was itself considered reason for judging the system unacceptable.
Time history responses to step inputs were run to confirm the assumption
of equivalency. Attempts to statistically correlate predicted pilot ra-
tings obtained by comparison of the low-order system to the requirements
of MIL-F-87858, with actual pilot ratings of the high-order system have
shown good correlation in many cases but unsatisfactory correlation in
some. The anomali2s may be the result of inconsistent pilot ratings,
but may also indicate that the basic assumption linking frequency response
match with true equivalency does not always hold for all inputs. The need
exists to more clearly unders-and the link between frequency response
matching and similarity of system time response. Since this involves
fundamental properties of linear systems the investigation is well suited

to analytical treatment.
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EXPANSION OF EQUIVALENT SYSTEMS INTO THE LAPLACE DOMAIN

Throughout this analysis several properties of linear systems will be
employed which for clarity and convenience have been substantiated in Ap-

pendix A. Among these is that a transfer function:
(s) _ k m{s-(am+jbp)}
x(s) m{s~(an+jbn)}

when evaluated at a point in the Laplace domain, s = o+ju, represents the

forced response portion of the complete response:

y(t) = GAe9t sin(ut + 8) + aneant sin(bnt + yn)
e ™
At
forced response free response

when the system is subjected to the input:

x(t) = Ae%t sin wt °

Since present methods locate equivalent system parameters based on
matching transfer function magnitude, G, and phase shift, 3, along the juw
axis, they are enforcing only similarity of the forced response for a
special class of inputs, undamped sinusoids. It is not immediately clear
either that similarity of the free response, or that similarity of the

total response to damped simusoids are maintained.

0f course, no low-order system can approximate a higher-order system
everywhere in the Laplace domain. Forunately this is not necessary when a
human pilot supplies the input. The principle is already recognized by
current methods in that the frequency response matching is done only over
a limited frequency range. The upper limit, based on human neuromuscular
lags, will later be extended into the Laplace domain. First, however, it
is desirable to establish why consideration of the system response to La-

place domain inputs is necessary.

The basic concept of equivalency is based on similarity of input and

output functions of time. Damped sinusoids within the pilot's operating
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region are inputs to which the system might be subjected. Therefore a
true equivalent must adequately simulate the response to such an input.
This reasoning alone is not sufficiently compelling. It could be argued
that since any function possesses the fForier series expansion:

x(t) = IA sin % t

that any function may be approximated by a sum of sinuscids within the
appropriate frequency range. Further, because of the linearity of the
system, all that is necessary is to match the total response to each term

of the series separately and the total response will have been matched.

In general pilots control aircraft with highly irregular and aperiodic
inputs. Although a Fourier sefies may represent a very arbitrary input sig-
nal, it may do so only over the finite interval: 0 < t < 2L. Outside
this interval the Fourier series repeats; that is; the function is periodic

regardless of the form of the function within the interval.

Consider what is meant by the similarity of two 'functions. If two
functions of time are identical then they will have identical values for
the function and all its derivatives at any point in time. I{f the
functions are approximate, only some of these conditions will hold; that
is, the values of the functions and/or their derivatives will match at
only a finite number of points. The number of such similarity conditions
which exist are then a measure of the accuracy of the approximation. A
Taylor's series expansion,

)n

x(v) = ¢ hal e
approximates the function by equating the value of the function and its
derivatives at t=a. The Taylor's series representation is valid only in
the vicinity of t=a. To obtain an approximation valid over a wider range
of time, the value of the function and its derivatives must be matched at
several points over a given time interval. Since it is generally dif-
ficult to estimate higher-order derivatives of a time response, it is

most practical to require that the value of the function and its first

derivative at a point be used as similarity conditions, Obviously
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guaranteeing that only the value of the function matches the approximating
function at a point says very little about the accuracy of the approxi-

mation at near-by points.

The general form of the input function which satisfies the differen-

tial equation describing the system has already been stated as:
x(t) = Ae%t sin wt
and the linearity of the system allows simultaneous inputs of the form:
x(t) =CAe% sin (wt + 3)

the first derivative of which is:

dx(t)
dt

= TAe%t {u cos{wt + ¢) + g sin(wt + o)}

Writing these equations in terms of complex numbers simplifies the form to:

- Ae J¢ st Aé-) ¢ s:’:t
x(t) =¢ 5 © 2] e
or j
x{t) = ZA§.® st
J
and j .
Ael® Ae~J¢ | g4t
i = - st - - it
x'(t) £ 2 2 s
or
Ae-
! = st
x'(t) =L 2 e

where s = ¢ + jw and s* =0 = juw,

: m T T N N N Y,
e i M i T SR B A ey IR R
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Applying the similarity conditions at i points yields the system of
equations:
- x(t1) Cesiti 52t .. eSity Aed®:/25 ]
x(ty) | =] eS1t2 esgtz... LeSits Azej?2/2j
| x(6)) [ eS1t1 eS2Ti. ... eS2f; Ajed®i/2j_
] ( x'(ty) B slesltl szesztl .sieSitl Alej¢1/zj
x'(t,) | | s,eSit2 szeszt:...sieéitz Azej?2/2j
i x,(t’i) Lsieslti SzéSZti'--SieSitl Al.eJ@i/ZJJ

This system of equations may either be viewed as 2i equations in° 2i complex
variables; s; and Aiej¢i/2j, or as b4i equations in the Ui real variables;
g;, »i, Aj and $j. Either way unique solutions are obtainable, although
the solutions are not stréight forward due to the nonlinearities of the

equations.

If we consider only values of s for which s; = jwj, o; =0, we ac-
tually eliminate both ¢ and w as variables and the preceeding system of

equations becomes linear in the constants, Aiej¢i/2j.
The general imput form,
x(t) = Ae®t sin(ut + 9)

with o = 0 becomes:
x(t) = ZA sin(wt + ¢).

Each individual term of the series repeats its value at wt = n27. |If

several terms all repeat at the same time,

"
t = Lgl =|n31 = nz— - - - etc.
wy w2 w3

g
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which implies,

2.0 w3 00 L L L gtc.
] 2 m
This implies that the ratios of all frequencies in the series are express-
able as ratios of integers; i.e., rational numbers. Since any frequency
may be approximated by a finite decimal, the periodicity of the series
holds to any desired accuracy for any combination of frequencies. |If

the series repeats over the interval 2L, all frequencies are integral

multiples of a single base frequency,
m m
wp =mr, w3 =op - - - etc.

Thus, with g = 0 the general input form becomes that of the general forier
series,

x(t) = IA sini{Tt + 3),

in order to avoid the Fourier series repeating within the time interval of
interest,
L>t/2
Approximation
il Interval

Function

~ — — = Fourier Series

time

Beyond this the choice of L is arbitrary, but once chosen sets the values
of:

s=tft  1<ngi
Therefore, s; having been determined, half the variables in the matrix
equations are eliminated, and only half of the 2i similarity equations
may be satisfied. The damped sinusoid series then represents a better

approximation than does the Fourier series for a finite number of terms be-

cause it can satisfy twice as many similarity conditions., These reasons
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are considered sufficient to justify consideration of system response
to inputs in the Laplace domain. It remains to more clearly define the
region of the Laplace domain within which human pilots are capable of

operating.

it is generally conceded that a pilot's reaction capabilities pro-
vide an upper limit to the frequency range considered for j, Bode match-
ing techniques. The problem exists of how to extend this principle into
the s plane in order to consider system response to aperiodic inputs.
The frequency of a sinusoidal input is easily relatable to any fraction
of a cycle deemed to be most significant. The only general similarity
between an undamped and highly damped sinusoidal is that both possess an

initial maximum or peak.

Sinusoid Damped Sinusoid

x(t) : /\ x(t) !
| '
/" L T

With the interpretation that the initial peak represents the time to

initiate removal of a previous control motion, it may be related to
response time. The initial peak then represents a convenient means of

extending the upper frequency limit over the s plane. The general in-

put form is:
x(t) = Ae%t sin ut

At the first peak, its first derivative vanishes:

dx (t) ot :
arraml Ae%t {g sin wty + w cos st} =0

which reduces to:
g sin uto + w €cos wto =0
or:
1 -1 ,~w
t, =T tan (G )

Note that at ¢ = Q0 the time to the peak becomes the quarter cycle time;

t

-1
o 2w
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which for the customary upper frequency limit ¢of 10 radians per second is:

= e = 1§67 ac .,
't T30 57 sec

The pilot operating region is then defined by the contour:

N

7ET tan{.tg)

Note that as . » 0, tan uty + sin wty > wtg and:

]im ]
w+0 0=--—=-6.366 sec”!

e -
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TIME RESPONSE MATCHING

The final test of any equivalent is its ability to approximate the
total time response to an arbitrary aperiodic pilot input. This is equi-
valent to matching time responses over the defined region in the s plane.
There is therefore a direct implication that equivalent system parameters
should be determined by maximizing the similarity of the total time re-
sponses to such inputs. We may consider applying to the output the same
similarity conditions we have already applied to the input. The general

output form is:

y(t) = GAe9t sin(ut + 8) + ZBneant sin (bpt + wp)
or in terms of complex variables:

y(t) = GAelBest - GAe'.ieeS*t + ZBneJWnernt

and its derivative:

y'(t) = sGAed®eSt - s*GAe~J6eS™t + 1r Bpelvnent
where s =g + juw, s* = ¢ - juw, rm = an % jbp, and where:
: - (am+
Gejé < Kmls - (am+]bm)} at s = o + ju

m{s - (an+jbp)}

The number of variables in these equations is directly dependent on the
order of the transfer function and is: Number of variables =1 + m + 2n.
It is possible therefore to enforce this number of similarity conditions
on the low-order system output. |t is also possible to consider other
means, such as a minimum squared error method, of enforcing time response
similarity. |In addition, considerable judgment may be involved in the
choice of times at which to enforce those conditions. These difficulties
will not be critical to the most significant conclusion of the analysis®
but for the present will be dealt with by making certain assumptions

about the pilot's perception of the output.

if it is assumed that human pilots are not sensitive to small dif-
ferences in the system response but only to certain gross characteris-
tics, we may set similarity conditions which duplicate them. Based on

pilot comments on high-order systems contained in references 3 and 4,

* see page 55

~
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the most common judgments made on the systems seem to fa!l into three

catagories:

1: Response magnitude or ''sensitivity"
2: Response lags or sluggishness

3: Annoying residual oscillations or tendency to PI0.

For well-damped inputs such as that in Figure 1-a, the pilot will most
likely interpret the first peak of the response as the system response

to his input and the long term response as characteristic of the re-
sidual oscillations. Matching the timing and magnitude of the initial
peak would guarantee, under these assumptions, similarity of system sen-
sitivity and speed of reaction as perceived by the pilot. Since the pilot
could consider the residual oscillations an annoyance, it is probably most

significant to match the time at which they damp out.

The first ‘n' similarity conditions are always set by the require-
ment that the system be initially undisturbed. The vaiues of the am-

plitudes and phasing of the free response modes:
Bnel¥nernt fn = an % jbn
are set by requiring that the value of the output function and its first

n-1 derivatives be zero at time zero. Considering the first over second

order equivalent system form currently in use, these conditions are:

GAel® - GAe=J® + Bye¥1 + ByedVz = 0
sGAeJ® - s#GAe™JO + ri8relV¥r + rzazejwz =0

Apulying similarity conditions at the peak time, t;, and the subsidence
time, to,
GAeiBeStl - GAe JBeS %1 4 Blevleity + 8,e¥2e 2T - ¥pk
sGAedBeStL - sxgAe ™ feS T 4 r B e¥letl + r,B,e¥2er2tl = 0

GAeieStz- GaeTiBes*tz + Blewlerlt2 + Bye¥2em2t2 = Ymin

sGAejBestz - sxGAe~i%5*t2 + r B e¥leM1ts + ryBeV2eM2t2 = v .

n
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where:

A, 5, and s¥ are known hecause :nme input 5 known
Yok’ t., and t. are determined ov the hign-order system respcnse
which is known
Ymin and Y'min are values of the functicn ard its slope which
define the subsidence time t . They are small but not exactly zero.

G, 3, r.» r,, B,e’>, and B e are variables.

The similarity equations may be written more conveniently in Matrix form as:

_.3 7 [_A A 1 ] - _Gejé -
° As Asx M T, Ge™J3
Ypk Aesti  pes™hy Mty elat: BIEle
0 ) sAeSt1  sxAeS ty rlerxtl roef2ts BZeJ¢z
Ymin pestz  peS*t: efits el2t2 -

RILE __SAeStz seheS tz  roeMite rze"ztz.a

Although highly nonlinear, this system of equations has a solution best
obtainable by numerical methods. Having obtained a solution for the trans-
fer function magnitude, phase, and natural response modes (i.e., pole

locations), the numerator zero location and gain are determined by:
K(s. - a;) = GeJ8(s - r))(s - r,)

The high order-system cculd be approximated by lower than a first
over second-order system but only if some of the similarity conditions are <
sacrificed. Higher-order equivalents would produce better time response

matches but not different pilot ratings under the assumptions just made.

Figure 1-b represents a hypothetical high-order system response to
a highly-damped input, Figure 1-a. Figures 1-c¢ to 1-h represent possible
low-order system responses to successively higher-order equivalents. These

show haw the equivalents, by enforcing progressively more similarity

conditions, improve the time response matches. For instance, Figure 1-¢

demonstrates that a pure gain, having only one variable, is capable only
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FIGURE 1 - Successive Low Order System Time Response Approximation
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of matching the peak magnitude of the high-order system response. Ffigure
i-g demonstrates that the first over second-order equivalent is the sim-
piest form capable of imposing similarity of the function initially, at

the first peak, and at response subsidence simultaneously.

When the time delay is added, as in Figure 1-h, a time scale shift

is effected and the similarity conditions which were applied at t = 0,

(el

= t,, and t = t, are now applied at t' =0, t;j =¢t, - T, and

5y = t, - T. The result is that although the variable T was acguired,

re

the initial conditions are applied at t = T rather than t = 0 and those
two similarity conditions are Jost. The addition of the time delay re-
sults in a net loss of similarity conditions and detracts from the overall
similarity of the time response. |If it is sufficiently small, the delay
may not significantly detract from the initial response similarity but will

in general change the other equivalent systems parameters.

L R T e T — i v it

e
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SAMPLE HIGH AND LOW ORDER SYSTEMS

To this point in the analysis czoncepts and principles have been dis-
cussed which will serve as a framework for the analysis of specific high-
order systems and their equivalents. The high-order systems were selec-
ted from among those of the LAHOS experiments of reference 2, while their
lower order equivalents were obtained from reference 1. These systems
were the LAHOS 1-4, LAHOS 1-C, and LAHOS 6-2 configurations. LAHOS 1-C
was considered typical of those in the references, LAHOS 1-4 repreSents'
an inadequate form according to the previous development, and LAKQOS 6-2
represents the highest order reduction in the references. All possess
good j, Bode matches with cost functions less than 10. The notation used

will be:

(rs+1) = [T15 (s2/w2+20/0 _s+1) = [un, :]

or:

(s - o) = (0); (5% - 208 + 0% +.2) = (g, .)

CONFIGURATION: LAHOS 1-4: 0/2nd Order Equivalent, Cos* Function 9.0:

High Order System:
3 (-1.4]

Fe  126.6, 0.6].75.0, 0.7][1.0, 0.78]1-0.5]

or:

3 1.0647 x 107  (-0.714)

Fs  (-15.6, 20.8)(-52.5, 53.56) (-0.74, 0.6726) (=2.0)

Low Order System:

8 _ 1.08

Fs  [1.56, 0.74]
or:

- 2.628

Fg  (-1.15, 1.05)

Time Delay = -0.06 seconds

s L T ST AT T i e TR T - -
N el - A ey g
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CONFIGURATION: LAHOS 1-C: Ly Free, Cost Function 8.9:
High Order System:

§ . (-1.4](-0.2]
Fs T26.0, 0.6]175.0, 0.7]11.0, 0.7811-0.17

or:

- 1.0647 x 107 (-0.714)(-5.0)
F¢ (-15.6, 20.8)(-52.5, 53.56)(-0.74, 0.6726)(-10.0)

Low Order System:

3 _ 0.99[-2.63]
Fsg [0.86, 1.04]
or:
5 _1.9257 (-0.38)
Fs (-1.74) (-0.6487)
Time Delay = -0.037 seconds
CONFIGURATION: LAHOS 6-2: L. Fixed, Cost Function 0.97

High Order System:

5. [0.5]{0.543][0.06][1.4]
Fs  [0.2J[0.1]J(1.717(1.9, 0.65](26.0, 0.6](75.0, 0.7]

= 1.1269 x 107 (-2.0)(-2.33)(-16.67)(-0.71)
(-5.0)(-10.0) (-0.91) (-1.235, 1.G44LY(~15.6, 20.8)(-52.5, 53.58)

-n
wn ICD'

Low Order System:

8 _ .97 [1.h]
Fo _ T1.7L, 0.78)

o b.111(-0.714)
s (-1.357, 1.089)

"1‘@-

Time Delay = -0.084 seconds
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DISSIMILARITY OF THE FORCED RESPONSE

Since current equivalent systems methods match the forced response,
transfer function magnitude and phase, along the ju axis, we might consider
whether this principle is extendable into the S plane. |If similarity of
the forced response per se is a necessary condition to similarity of the
total response, then matching the forced response is a general principle
extendable over the appropriate S plane region. Since equivalent systems
parameters are currently being determined to minimize the cost function
along "' jw axis, it is reasonable to believe that no such similarity
exists away from the jw axis. Tables one through six compare high and low
order transfer function magnitude and phase angle of the three LAHOS con-
figurations under consideration over a frequency range zero to ten radians

and sigma values from zero to -8.5.

The phase angles in these tables occasionally appear positive. The
phase angle is calculated by an inverse tangent function which returns
angles between £180°. Positive phase lags then actually represent the

angle; 3 = -360° = Scomp Bcomp > O

For the low-order equivalents, values greater than ~180° occasionally appear
because the phase shift due to the time delay is added to the inverse tan-

gent function.

From these tables it is apparent that no similarity exists anywhere
but along the line o = 0. Therefore if similarity of the forced response
is a valid general principle there would be considerable differences in the
total time responses to damped sinusoidal inputs. Figures 2, 3, and 4
have been plotted to more clearly show the forced reéponse variation of the
three configurations at one radian frequency across this damping range. The
sigma limits dictated by extension of pilot reaction times into the S plane

are also shown,
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LAHOS 1-4 CONFIGURATION
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LAHOS 1-C CONFIGURATION
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LAHOS 6-2 CONFISURATICN
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Figure 3 compares the forced response of the LAHOS 1-C configuration

with its first over second-order with time delay =quivalent.

At - = -1.5:
MagHOS =1 .097 %HOS = "1373
MagLOS = 2.07] E‘LOS = ']OL&;‘

which constitute substantial magnitude and phase errors.

Figure 18 represents the total time response comparison of these two

systems for the input,
x(t) = Ael sin ut, 3 =-1.5, . =1.0
and shows that of the high-order and low-order systems to be highly similar.

Recall that in setting the similarity conditions on the total time
response, G and 3 were considered variables. If they were set equal to
the high-order system values, total variables and therefore similarity

conditions would be lost.

Therefore, it is clear that similarity of forced response is not a
general principle that holds over the S plane nor in fact should this
condition be enforced in determining equivalents. Only the total time
response can be the comparison standard over the S plane. It will be
shown later that importance of the forced response along the ju axis
lies in the fact that it also represents the total long-term or steady

state response to the general input at those points in the S plane.

- 31 -
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TIME HISTORY COMPAR!SO

NS

Because the low-order system equivalents were obtained purely by

matching the system forced response along the line - =90, it is

likely

that the six time response similarity conditions are not met at all

points within the S plane region of interest, even though good frequency

response matches have been obtained.

To determine the extent of the

mismatching, time history responses were calculated for input points

across the defined S plane region.

Figure 5 depicts both the region

corresponding to a maximum frequency of 10 radians/second, and a time

to initial nput peak of t. = .157 seconds

input test signals across that region.

o}

and the distribut

ion of

Table 7 relates the frequency

damping and amplitude of each input to a letter designation for easy

reference.

CASE NUMBER o4 ) A
A 0.0 1.0 1.0
8 -1.5 4,355
C -4.0 10.985
D -6.0 16.385
E 0.0 5.0 1.0
F -1.0 | 1.342
G -3.0 2.164
H -5.0 3.102
| 0.0 8.0 1.0
- -0.5 1.10
K -1.5 1.319
-2.5 1.557
x(s) = - wh -
[s - {0+ juls - (¢ - jw)]
et/ tan~! (")
sin {tan‘lﬂjg)}
TABLE 7: TEST INPUT CASES
- 33 -
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te = .157 sec.
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Conditions of constant unity magnitude on the initial peak of the
input signal were imposed in order to prevent the input signal from dimin-
ishing in magnitude as damping was increased. Time for the initial peak

has been shown to be:
If the input value at this time is unity:

x(tg) = Aedto sin wty =1

- )
A= e o/w tan~1( c)

sin {tan'l(lg)}

The time responses were calculated using a digital computer program which

employs the Heaviside expansion to calculate inverse Laplace transforms

y(t) =L H{F(s) x(s)}
wA

where F(s) is the transfer function and x(s) = ——
’
Since the author was not responsibie for this program, its results
were verified by a hand solution of the time response to input case B

for the LAHOS 1-C equivalent. This verification appears in Appendix B.

The LAHOS 1-4 configuration was run for the entire range of test sig-
nals. The results appear in Figures 6 through 17. Because the total out-
put magnitude decreases with both w and o, the absolute importance of the
response differences diminishes at higher frequencies. It was decided to
examine the LAHOS 1-C, and LAHOS 6-2 configurations only at the lowest
frequency cases where the differences between high and low order system

responses are most noticeable. These appear in Figures 18 through 23.

Figures 6, 10, and 14 show the LAHOS 1-4 configuration response to
the undamped sine wave inputs. The responses show excellent agreement
through the initial peak which progresses toward small errors in the
magnitude and phaseing of the stady state response as indicated by the
small differences in the frequency responses of reference 1. As we pro-
ceed into the S plane at each frequency, slight decreases in the accuracy

of the initial response peak may be detected along with a quite noticeable

-35_
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LAHOS 1-4 CONFIGURATICN

INPUT A

t ~sec

FIGURE 6 - Pitch Rate Response
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LAHOS 1-4 CONFIGURATION

FIGURE 7 - Pitch Rate Response

-37-

1.0
INPUT 3
8.5
0 L
0 2 4 6 8 10
£ vsec.
1.0
HOS
LOS  ~====-=--
0.5 \ |
e
Ty
0 p——— |
0 2 b 3 10
6

i

by
i

P30 e g




NADC-79231-60

LAHOS 1-4 CONFIGURATION

1.0

INPUT C

tvsec.

1.0

HOS

WD

0.5

FIGURE 8 - Pitch Rate Response
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LAHOS 1-4 CONFIGURATION
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FIGURE 9 - Pitch Rate Response
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LAHOS 1-4 CONFIGURATION
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LAHOS 1-4 CONFIGURATION
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Figure 11 ~ Pitch Rate Response
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LAHGS 1-4 CONFIGURATIC
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Figure 12 - Pitch Rate Response
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LAHOS 1-4 CONFIGURATICN
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Figure 13 - Pitch Rate Response
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LAHOS 1-4 CCNFISURATICN
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LAHOS 1-4 CONFIGURATION
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LAHQCS '-35 CONFIGURATION
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LAHQS 1-C CONFIiGURATICN
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FIGURE 18 - Pitzch Rate Response
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LAHOS 1-C CCNFIGURATICN
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LAHOS 1-C CONFIGURATICN
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Figure 20 - Pitch Rate Response

- 50 -




i

NADC-79231-30

LAHOS 6-2 CONFIGURATION
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Figure 21 - Pitch Rate Response
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LAHOS 6-2 CONFIGURATION

Figure 22 - Pitch Rate Response
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LAHOS 6-2 CONFIGURATICN
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FIGURE 23 - PITCH RATE RESPONSE
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difference in the subsidence times of the high order system (tH) and
low order system (t; ). The relative trend persists at high frequencies

but is less noticeable due to the decreased magnitude of the output.

Figures 18 to 20 show the LAHOS 1~C high and low-order system re-
sponses to the low frequency well-damped inputs. The higher order
equivalent shows a much better overall match of the time response by
improving the subsidence time match while incurring slightly greater
initial peak errors. Similar statements hold for the time responses of
LAHOS 6-2 in Figures 21 to 23.

While it may be doubtful that these differences (for LAHOS 1-6,

and LAHOS 6-2) would be significant to the pilot observing them, they

do show that the equivalent's ability to represent the high~order sys-
tem varies with the input signal and is not optimized for any input or

S plane point. The LAHOS 1-4 configuration, while not using the recom-
mended form for the equivalent, demonstrates that ju Bode matching alone
does not guarantee adequate similarity of response. Further, the theory
prediction that this form could not satisfy all the similarity conditions

is confirmed.

- 54 -
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IMPLICATIONS TO jw BODE MATCHING METHODS

As the damping of the input signal is decreased to zero, the long-
term output does not attenuate but approaches the forced response. Sim-
ilarity of the forced response to undamped inputs is the same condition
as matching the subsidence time for well-damped inputs. They both match

the long-~term or steady-state response.

The six non-linear equations which enforce the total response sim-
ilarity conditions are dependent on the value of S; that is, the input
chosen. In general the equivalent systems parameters will vary over
the Laplace domain. The exception is the case where the high-order

system and its equivalent are of the same form.

In the case where the equivalent system parameter variation over
the region of interest is small, they might be considered constants.
The parameters could equally well be determined by satisfying a single
similarity condition for several different inputs as by satisfying sev-
eral similarity conditions for a single input. To within acceptable ac-
curacy the same parameters would be obtained. Locating equivalent cys-
tem parameters by matching ju Bodes in effect assumes they are approx-
imately constant over the S plane and imposes the similarity of the long
term response along the line o = 0. The initial similarity conditions
are always matched in the determination of the free response mode coeffi-
cients. If a very good frequency response match is obtainable, the as-

sumption of invariance is good at least along the jw axis, and adequate

matching of other similarity conditions (with sinusoidal inputs) is implied.

As shown by the LAHOS 1-4 time histories, similarity of the j. Bode alone

does not guarantee time response similarity elsewhere,

One method of obtaining time response matched equivalents has been
suggested here. Others might be possible. The important point is that the
equivalent system parameters vary with both ¢ and s and that ju Bode
matching techniques depend on that variation being negligible. This im-

plication remains regardless of the method used to match the time response.

o w
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Failure to obtain an acceptable j. Bode match is a direct indication that
the equivalent system parameters vary significantly. The requirements of
MIL-8785B allow these parameters to vary within certain tolerances. The
fact that they vary does not mean that they exceed the specified toleran-
ces. Failure to obtain a good jw Bode match is therefore an insufficient

reason for discarding the system.

It is too restrictive to require that for a system to be judged ac-
ceptable that a single low-order equivalent be capable of representing it
over the entire S plane region. Rather, it is necessary only that the

high~order system behave Jike some acceptable lower-order system.

The success of jw Bode matched equivalents here and in the references
indicates that in many cases invariance of the equivalent system parameters
is a good assumption. But uncertainty for each individual case will always
exist until the assumption is checked. Further, time delays are required
in many cases to enforce the invariance assumption. As discussed on page
17, this alters the parameters and decreases the similarity of the time
response. It is uncertain that a low-order system with a small time delay
will always be evaluated in the same manner as an identical system without
any time delay. Yet that assumption is made in applying the current equi-
valent system parameters to the requirements of MIL-8785B. |f the time
delay is sufficiently small this is not a serious objection, but no such

difficulties are encountered with time response matching.

Section 3.2.2.1 of MIL-8785B describes tolerances for Lsp and «nsp
as a function of Ng/a (La or 1/T32) Given a low frequency magnitude of
0 db and low frequency phase angle of 0°, these tolerances define a magni-

tude and phase envelope in the frequency domain:

Envelope

------- HOS

00

PHASE™*

Frequency Frequency

* { Not plots of actual envelopes )
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If a high-order system has a frequency response within that envelope, then
there is some acceptable low-order system which has the same steady state
response. |f the high-order system response violates the envelope it may
be discarded. |If it possesses a good lower order system match, the equi-
valent system parameters are approximately constant for undamped inputs
within the frequency range. Significant variations may still exist in the
g direction. |If the high-order system response lies within the envelope
but does not possess an acceptable frequency response matched equivalent
the only way to determine the equivalent system parameters and therefore

its acceptability is by total time response matching.

Current Bode matching techniques are a good test of the high-order
system only if the implied assumption of parameter invariance holds over
the S plane. The assumption works well in many cases as long as time delays
are included in the equivalent system form, but statistical data can only

establish the probability of its holding in any given application.
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IMPLICATIONS TO PILOT COMPENSATION CRITERIA

Reference 3 developes a flying qualities criteria based on pilot com-

pensation of the form,

Ss .« (TiS + 1) o . 38

gc P {T.S + 2)
The basic philosophy is that pilots desire a certain 'optimum'' response
and are willing to provide limited amounts of compensation to achieve that
response before down-rating the system. The final pilot rating is then
dependent on how much compensation must be provided and the nearness of

the best result to the optimum.

If it is assumed the pilot wants direct pitch control with no phase

lags the implication is that at low frequency:

Mag (8/3¢) = 1

Mag (3/9¢)pp = O

& (3/3) =0
Deviations from this (droop) should be minimized.

Furthermore, if oscillatory overshoot is to be minimized, a minimum
zero-over-second-order form for the optimum must be considered in order
for the system to have an oscillaroty free response mode. Maintaining a
certain bandwidth maintains the desired response up to a certain speed of
input. For a well-damped (7 = .707) 0/2nd system the -3 db bandwidth oc-

curs at the break frequency, wn, where the phase angle passes through -7/2.

_-”" 7, }jresonance

O T \}-3 db
G dropp {
\
wn —— Optimum
0

---- A/C + Pilot
Compensation

8 -m/2i-
DAV ——
-7 =
- 59 -
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The compensation parameters Kp, T

, Tz, are determined by providing
phase compensation to hold 2 = -7/2 at the specified bandwidth, while
matching the low frequency magnitude and minimizing droop. The amount

of phase compensation is then a measure of how hard the pilot must work
to obtain the optimum and the resonance is a measure of how close to the
optimum he is able to get. Since the object is to come as close as pos-
sible to the simple '‘optimum'' Bode, this method is providing the same re-
sults as matching the system Bode to obtain an equivalent. |In this case
we are attempting to match the aircraft and flight control system dynamics
plus pilot compensation with the optimum zero over second order system.
The main difference is that we are attempting to match the low~order sys-
tem by varying rcot locations in the high-order system rather than vice-

versa.

If we view this criteria in terms of the high-order system Bode, we
see that by allowing the pilot to provide certain magnitude ard phase com-
pensation, the high-order system magnitude and phase may be allowed to vary
from the optimum by a like amount. This is the same as allowing the high-
order system Bode to lie within a certain envelope similar to that already
discussed. This technique then is not as restrictive as current jw Bode
matching techniques because it allows magnitude and phase to vary within

that envelope.

The pilot compensation approach, however, is sensitive to the band-
width chosen. Like the current equivalent systems methods it does not con-
sider what differences in total response to highly damped inputs might oc-
cur. Thus the pilot compensation approach is, in principle, doing much the
same thing as current equivalent systems approaches and suffers from some

of the same deficiencies.
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CONCLUSIONS AND RECQOMMENDATIONS

Current methods of applying equivalent systems as well as proposed pilot
compensation criteria are based on sound concepts. Both have been shown to
have highly similar implications and some common limitations. Current equi-
valent systems methods are limited by the implied assumption of invariance
of the equivalent systems parameters. Since they deal only with jw Bodes
neither method considers total system response to aperiodic pilot inputs.
Provided the recommended equivalent system form which includes artificial
time delays is employed, the invariance assumption is valid in many cases.
But because it is not assured, straightforward application of either method
may not always be reliable. Determination of equivalent systems para-
meters based on time response matching not only eliminates the uncertainty,
but is directly implied both by the equivalent system concept and by the
idea of an optimum response basic to pilot compensation methods. As such

it represents the most logical extension of current specifications.

The analysis suggests that equivalent systems parameters be considered
variables over the region of the Laplace domain within which human pilots
may operate; that their values be determined by similarity of total time
responses to inputs within that range; and that the acceptability of the
system be judged by comparing the variations with the current MIL-F-87858

requirements.

It is recognized that application of this criteria presents some
problems. Programming simulators for direct comparison of high-order
systems with their equivalents is difficult because of the variance of
equivalent systems parameters with input. No design methods currently
exist to meet the criteria. It is unclear what judgement should be made
about a high-order system if it is acceptable over only a portion of the
S plane region. Additional verification of the implications are necessary
before high levels of confidence in the method are achieved. |In particular
some of the anomalies which have occured with present methods should be

examined under the suggested criteria.

It is believed that most of these problems may be either solved or

avoided as further attempts to apply the methods are made.
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APPENDIX A

APPLICABLE PROPERTIES OF DIFFERENTIAL EQUATIONS
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All linear control theory considers solutions to a linear ordinary

differential equation with constant coefficients:

. : m j
. dt! . J o dtd
i=0 j=0

where the output function, y(t), is initially zero and for times greater
than zero is a consequence of the input function, x(t). For any given
input function there may be many solutions for the output function, the
complete solution being the sum of all such solutions. It is a direct
consequence of the system's linearity that any sum of solutions for the
output is also a solution and that the complete response to any linear
combination of inputs is the sum of the complete responses to each in-

dividual input.

IF: y1(t) and y,(t) are solutions,
THEN: y1{t) + yz(t) is also a solution.
and
IF: x1(t) produces y;(t),
and: x2(t) produces yz(t),
THEN: x;{t) + x,{t) produces y;{t) + y,(t).

Since zero may be added to either side of equation (A-1) without

changing the equality, any functions which make:

n diy(t)

I 8] =0 (A-2)
i=0

m .

- dix(t) _ -
z Aj - 0 (A-3)
j=0

are always solutions. The functions for y(t) implied above are called the
homogeneous or free response solutions since they do not depend directly on

the input function (s). All other solutions depend explicitly on the input

function (s) and are termed the forced response. The total response is the
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sum of both: y(t) = y(t) y(t)

+
t forced free.

Equations of the form (A-1) are easily solved using the Laplace
transform which changes the operation of differentiation into multipli-

cation by the Laplace variable, S.

¢Z?[d;Z§£l] = Siy(s)
changes (A-1) to:

m
B;Si = x(s) Iz A;sJ (A-4)
0 j=

y(s) .
i

e 3

which when factored and rearranged yields the transfer function:

m
(s) 20 {S -~ (aj + jbi)} -
O I R O T A3
i=0

The above function in the complex variable s = g + j, may be evaluated as

a single complex number at any point in the Laplace domain:

Choosing a value for s is equivalent to setting the operation of differen-

tiation equal to multiplication by a complex constant.

IF: s =g+ juw
and: ‘Z'[ggéﬁl]= sx(s)
THEN: Z[%%’-} (0 + ju) x(s),

inverse Laplace transforming:

dx(t) = (

9t o + juw) x{t)

~/‘9§i£l = (0 + ju) [ dt +¢C

x(t)

$
H mf.“,‘.. il iy .-A‘."'Au,l..vrwb; PRI -
h . R L
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In x(t) = (g + j.)t + C
or x(t) = Ae(c * e
The transfer function equation becomes:
y(s) = Gel® x(s)

inverse Laplace transforming

y(t) = Gel? x(t)
or
\/(t) - GAeOt e_j(»ut + 3)

For x(t) and y(t) to be real functions of time, ¢ and w must appear in

conjugate pairs:
x(t) = Aedt vt
or

x(t) = At (cos ut + j sin wt)

A pair of inputs gives:

x1(t) + x2(t) = A,e% % (cos wit + ] sin wit) + Aje’
For the imaginary part to vanish:

t . t .
91 5in wyt + Azecz sin wat =0

Ae
which directly implies:

AL = Ay, 0, =0, » w, = "W,
and

x1(t) + x(t) = A%t (ed¥t 4 o7I0Y)

half of which is:

x1(t) . xa2(t) = Aect cos wt
2 2

2t

(cos u,t + j sin u,t)

Realizing that the arbitrary constant of integration might be complex makes

A in general a complex coefficient, allowing phasing of the input.
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x(t) = Ae’t sin (Lt + o)
y{t) = GAe 't sin (Lt + 5 + 3)
represent the general form of the input and that part of the output directly

dependent on the input, the forced response.

If equation (A-2) is Laplace transformed it is identical to setting
the denominator of the transfer function (A-5) to zero. The roots of the
characteristic equation then represent the free response solutions,

y(t) = it

i

where r. =a. + jb.

([ =}

r
Bie
1
Since the free response is also a real function of time the same argu-
ments about conjugate roots and complex coefficients hold as for the for-
ced response. The completely general form of the complete response, al-

lowing for simultaneous input functions, is:

y(t) = 2GAet sin{ut + (4+3)} + £8e% sin(bt + v)
\ / AW /
Forced Response Free Response

Since the free response represents all solutions to the homogeneous
and characteristic equations it is complete. Some question might remain
as to the completeness of the forced response. To examine this question
we may seek additional! solutions for a simple case using the known forced

response solution.

Consider the zero over first order system described by the differen-

tial equation:

whose transfer function is:
y_((z;,___‘__.
x(s s + a

Choosing the input x(t) = e %t s equivalent to setting s = -g. The

known forced solution is of the form y(t) = Ge OF,
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With this function of the output the differential equation may be written
as:

- - 1
Jt gt s

-3Ge + aGe It = ¢ or

which is the magnitude of the transfer function at s = -¢. Additional
solutions may be found by multiplying the known solution by another

function of time, h(t), or by adding an additional function of time, g(t):

y(t) = h(t) Ge™7t + g(t)

where neither h(t) nor g(t) equal Ge™9*-.
Returning again to the differential equation,

y'(t) = h'(t) Ge%t + g'(t) -¢ G h(t)e °t
and
ht(t) Ge 9t + (a-0)G h(t)e % + (g'(t) + a g(t)} = e”°F

equating the coefficients of e 9t

g'(t) +aglt) =0

gives the homogeneous equation:

and
G {h'(t) + (a-o) h(t)} =1

Making the substitution:

u(t) = h(t) -1
u'(t) = h'(t)
the second egquation becomes:
u'(t) + (a=0) u(t) = 0 1< (a-0).

G

which is the same form as the homogeneous equation and has the solution:

u(t) = Ce.(c-a)t
h(t) = 1 + ce (97a)t
The total solution is:
y(t) = Ge” %t [1 + Ce-(‘c+a)t} + Be 2t

or

y(t) = Ge™%t + (GC + B) e”2t
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Applying the condition that the output is initially zero:

y(0) =G + (GC +8) =0

at}

v(t) = ooy (79t - &7
and both h(t) and g(t) have collapsed back into the free response solution.
With some additional complexity the same principle holds for a zero over
second order system. Although more rigorous proof will not be attempted
here it may be taken that equation (A-6) represents the complete solution

except at the poles of the transfer function.

In the expression above as ¢ approaches a the output becomes undefined.

lim 1 -0t L -ty =
g+a a-g (e e ) =

olo

In this case we may use the free reponse solution to find the complete

solution because it is always part of the complete solution.

-at

y(t) = Be

free

Additional solutions are:

Replacing y(t) in the differential equation with this expression:

h'(t) Be®C - a h(t) Be % + g'(t) + a h(t) Be 2% + a g(t) = Ae 2"
which yields again the homogeneous equation: g'{(t) + a g(t) =0, and
h'(t) Be 2% = e 3¢

h'(t) B/A =1
h(t) = (A/B)t + ¢
Then:
y(t) = (At + BC)e % + pe 2t

at

y(t) = (At + (A+BC)} e
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For the initial condition:

y(0) = (A+8C) =0

the complete solution at ¢ = -a is:

Ate-at

y(t)
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SUMMARY

The properties of linear systems used in this analysis are then:

The total time response of the system is the sum of the free respcnse

and forced response.

The transfer function magnitude and phase angle at any point in the

Laplace domain represents the complete forced response:

y(t) = cAet sin (wt + & + 3)
to the input signal:

x{t) = Aect

sin (ut + ¢)

The free response is determined by the transfer function pole locations:

t

y(t) = SBnean sin (bnt + )

and the complex coefficients, Bneiw” are determined by satisfying
initial conditions (usually zero) on the total time response and its

first n - 1 derivatives.

The total time response to the sum of any such inputs is the sum of the

total response to each input separately.

The only exception to the general output form is at the pole locations

here:
where at

y(t) = Ate
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APPENDIX B

CHECK OF INVERSE LAPLACE TRANSFORM PROGRAM
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The LAHOS 1-C equivalent system from page 20 is:

(s) _ 1.9257 (s + .38) e 0378
(s) ~ (s + 1.14) (s + .BRET)

<

x

For input case 8, page 33:

x{t) = 4.355 e-l'st

sin (t)
Table 5 shows: G =2.071, 2 = -1047, 1.815 radians, and the output is:

y(t) = GAe%" sin (ut +37) + B,e?!t + B2t

To determine the free response mode coefficients set,

~<
—
o
~

[}

GAsin6+Bl+BZ=O
y'(0) = GA (ucos®' + o sin 3') + Bya, + Ba, = 0
which may be written:

GA (weose' + {g=a ) sin ') + B, (a, ~ a;) =0

1

GA (wcose' + (o=a,) sin 3') + By (a, - a;) =0
or
B _ weos' + (0-a) sin 2”
GA (al'az)
B _ _ wcosd' + (c-ay) sin 3~
GA (al-az)
The above phase angle includes an increment due to the time delay of: ﬁ
23 = -wT= ,037 radians
so

3t = 9 -468, 3" = 1,778 radians

with w=1, g=-1.5 a, =-1.14, a, = -.6487,

w
—

Ta = 1.2717
B2 _ _
2 = -.2935

GA = 9.019
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and the output function is:

-1.5¢! T.14

sin (t' - 1.778) + 1.2717 e T-648T7

y(t') = 9.019 (e . .2935e

by inserting values of t' =1t - T =t -.037 sec. intc this equation values
for y(t) may be calculated. This was done and compared to the values com-

puted by the program in Table B-1 and were found to agree within the error

shown.
TABLE B-1
time {sec.) Program Equation Error
1 8677 .8608 .0069
2 L5467 .5701 .0239
3 .0900 L1022 .0122
4 -.0606 -.0579% .0027
5 -.0658 -.0660 .0002
The worst error is: e = ,02L4, and the average error is e = .009

max
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